SUMMARY REPORT 426 WEST CARDINAL LANE (FORMERLY 1361 WEST CARDINAL LANE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 426 WEST CARDINAL LANE (FORMERLY 1361 WEST CARDINAL LANE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Table of Contents

1.0	INTRODUCTION	1
1.1 1.2	Background Information UST Removal and Assessment Process	
2.0	SAMPLING ACTIVITIES AND RESULTS	4
2.1 2.2 2.3 2.4 2.5 2.6	UST REMOVAL AND SOIL SAMPLING SOIL ANALYTICAL RESULTS GROUNDWATER SAMPLING GROUNDWATER ANALYTICAL RESULTS SOIL GAS SAMPLING SOIL GAS ANALYTICAL RESULTS.	4 5 5 6
3.0	PROPERTY STATUS	7
4.0	REFERENCES	7

Tables

Table 1	Laboratory Analytical Results - Soil

- Table 2
 Laboratory Analytical Results Groundwater
- Table 3Laboratory Analytical Results Vapor

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assessment Report
- Appendix C Laboratory Analytical Report Groundwater
- Appendix D Laboratory Analytical Report Vapor
- Appendix E Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
ft	feet
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
PPV	Public-Private Venture
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UFP SAP	Uniform Federal Policy Sampling and Analysis Plan
USEPA	United States Environmental Protection Agency
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

In 2015, the Public-Private Venture (PPV) responsible for the management of the residential area at LBMH initiated a plan to replace outdated homes in the LBMH area. The plan includes the demolition of existing homes and subsequent construction of new homes. In discussions with the PPV it was revealed that construction of the new homes could occur on portions of the property where the USTs were formerly located. In response to this plan, MCAS Beaufort assessed subsurface soil gas concentrations in the area of the former USTs at select properties within the demolition areas. The subject property of this report is one of the properties within the planned demolition area which was selected for a soil gas evaluation. It should be noted that the house at the subject property has since been demolished and this property is an empty lot. There are no current plans for construction in this area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan*

(*QAPP*) for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, 2016) and the Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management Division* (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

In accordance with the multi-media investigation selection process (Appendix A), groundwater analytical results are typically compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion into existing homes and the necessity for an investigation associated with this media. However, as previously stated, this property did not have an existing home and instead was among those selected for an evaluation of soil gas because of the planned demolition and construction activities.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane). The sampling activities at 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) comprised a soil investigation, IGWA sampling, and a soil gas investigation. Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 1361 West Cardinal Lane* (MCAS Beaufort, 2013). The UST Assessment Report is provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C. Details regarding the vapor intrusion investigation at this site are provided in the *Vapor Intrusion Report – July 2015, January 2016, and May 2016* (Resolution Consultants, 2017). The laboratory report that includes the pertinent soil gas analytical results for this site is presented in Appendix D.

2.1 UST Removal and Soil Sampling

On November 12, 2012, a single 280 gallon heating oil UST was removed from the front landscaped area adjacent to the driveway at 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 6'1" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report

presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated May 15, 2014, SCDHEC requested an IGWA for 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix E.

2.3 Groundwater Sampling

On June 24, 2015, a temporary monitoring well was installed at 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST. The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). Further details are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, May 2016). Field forms are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

2.5 Soil Gas Sampling

On July 27, 2015, a temporary subsurface soil gas well was installed at 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) in accordance with the SCDHEC approved *Uniform Federal Policy Sampling and Analysis Plan (UFP SAP) for Vapor Media, Revision 1* (Resolution Consultants, 2015). Soil gas sampling was conducted at this property to assess the potential risk for vapor intrusion associated with the possible construction of a new home on top of former the UST location. The soil gas well was placed in the same general location as the former heating oil UST and the IGWA sample location. The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). Further details are provided in the *Vapor Intrusion Report – July 2015, January 2016, and May 2016* (Resolution Consultants, 2017).

The sampling strategy for this phase of the investigation required a one-time sampling event of the soil gas well. The subsurface soil gas well at 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) was sampled on July 30, 2015. A soil gas sample was collected and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of soil gas sampling, the temporary well was abandoned in accordance with the *UFP SAP for Vapor Media, Revision 1* (Resolution Consultants, 2015). Field forms are provided in the *Vapor Intrusion Report – July 2015, January 2016, and May 2016* (Resolution Consultants, 2017).

2.6 Soil Gas Analytical Results

A summary of the laboratory analytical results and USEPA (United States Environmental Protection Agency) VISLs is presented in Table 3. A copy of the laboratory analytical data report is included in Appendix D.

The soil gas results collected from 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) were below the USEPA VISLs, which indicated that subsurface soil gas was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 **PROPERTY STATUS**

The house at 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) was demolished and the property is an empty lot. There are no current plans for construction in this area. Based on the analytical results for groundwater, SCDHEC made the determination that NFA was required for 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane). The NFA determination for groundwater was obtained in a letter dated February 22, 2016. Based on the analytical results for soil gas, it was determined that there was not a vapor intrusion concern at this property and a recommendation was made for no additional vapor intrusion assessment activities. SCDHEC approved the no further vapor intrusion investigation recommendation for 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) in a letter dated June 20, 2017. SCDHEC's letters are provided in Appendix E.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2013. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 1361 West Cardinal Lane, Laurel Bay Military Housing Area*, April 2013.
- Resolution Consultants, 2015. *Initial Groundwater Investigation Report May and June 2015 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, October 2015.
- Resolution Consultants, 2015. Uniform Federal Policy Sampling and Analysis Plan for Vapor Media, Revision 1, for Laurel Bay Military Housing Area Marine Corps Air Station Beaufort, Beaufort, South Carolina, April 2015.
- Resolution Consultants, 2017. Vapor Intrusion Report July 2015, January 2016, and May 2016 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, May 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations,* March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.
- United States Environmental Protection Agency, 2015. USEPA OSWER Vapor Intrusion Assessment, Vapor Intrusion Screening Level Calculator, Version 3.4, June 2015.

Tables

Table 1 Laboratory Analytical Results - Soil 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 11/12/12	
Volatile Organic Compounds Analyzed	d by EPA Method 8260B (mg/kg)		
Benzene	0.007	ND	
Ethylbenzene	1.15	6.17	
Naphthalene	0.036	14.7	
Toluene	1.45	1.74	
Xylenes, Total	14.5	29.5	
Semivolatile Organic Compounds Ana	lyzed by EPA Method 8270D (mg/kg)		
Benzo(a)anthracene	0.066	ND	
Benzo(b)fluoranthene	0.066	ND	
Benzo(k)fluoranthene	0.066	ND	
Chrysene	0.066	ND	
Dibenz(a,h)anthracene	0.066	ND	

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.1 (SCDHEC, February 2011).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2Laboratory Analytical Results - Groundwater426 West Cardinal Lane (Formerly 1361 West Cardinal Lane)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 06/24/15	
Volatile Organic Compounds Analyze	ed by EPA Method 8260B (µ	g/L)		
Benzene	5	16.24	ND	
Ethylbenzene	700	45.95	ND	
Naphthalene	25	29.33	0.98	
Toluene	1000	105,445	ND	
Xylenes, Total	10,000	2,133	ND	
Semivolatile Organic Compounds An	alyzed by EPA Method 827	0D (μg/L)		
Benzo(a)anthracene	10	NA	ND	
Benzo(b)fluoranthene	10	NA	ND	
Benzo(k)fluoranthene	10	NA	ND	
Chrysene	10	NA	ND	
Dibenz(a,h)anthracene	10	NA	ND	

Notes:

(1) South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 (SCDHEC, May 2015).

(2) Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1×10^{-6} , a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - not applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Table 3

Laboratory Analytical Results - Vapor 426 West Cardinal Lane (Formerly 1361 West Cardinal Lane) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	USEPA VISL ⁽¹⁾	Results Sample Collected 07/30/15
Volatile Organic Compounds Analyze	d by USEPA Method TO-15	(µg/m³)
Benzene	12	ND
Toluene	17000	3.4
Ethylbenzene	37	ND
m,p-Xylenes	350	ND
m,p-Xylenes o-Xylene	350	ND
Naphthalene	2.8	ND

Notes:

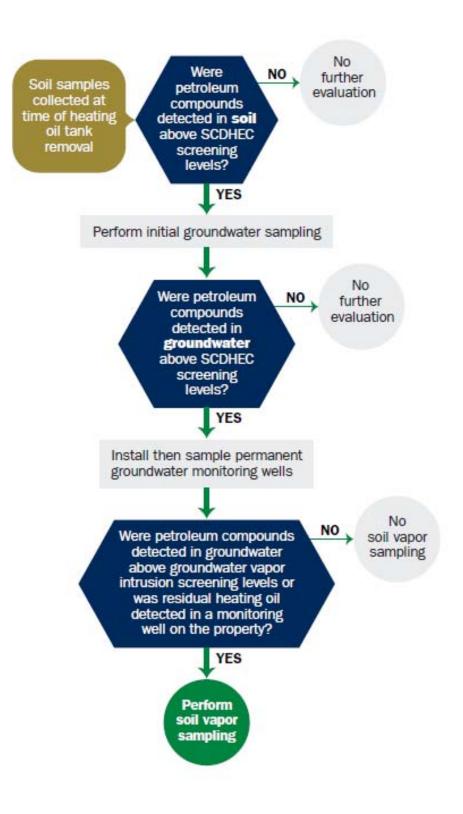
⁽¹⁾ United States Environmental Protection Agency Exterior Soil Gas Vapor Intrusion Screening Level (VISL) from VISL Calculator (Version 3.4, June 2015).

VISLs are based on a residual exposure scenario and a target risk level of 1×10^{-6} and a hazard quotient of 0.1. Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the residential VISL.

USEPA - United States Environmental Protection Agency

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The vapor laboratory report is provided in Appendix D.


RBSL - Risk-Based Screening Level

 μ g/m³ - micrograms per cubic meter

VISL - Vapor Intrusion Screening Level

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	nmanding Officer Attn: NRI	EAO (Craig Ehde)					
Owner Name (Corporation	Owner Name (Corporation, Individual, Public Agency, Other)						
P.O. Box 55001							
Mailing Address							
Beaufort,	South Carolina	29904-5001					
City	State	Zip Code					
843	228-7317	Craig Ehde					
Area Code	Telephone Number	Contact Person					

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Milit Facility Name or Compar	ary Housing Area, Mari	ine Corps Air Sta	ation, Beaufort, SC
	ne, Laurel Bay Milita	ry Housing Area	
Beaufort, City	Beaufort County		
			A 1

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is:

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		Cardinal
A.	Product(ex. Gas, Kerosene)	Heating oil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
Е·	Month/Year of Last Use	Mid 80s
F.	Depth (ft.) To Base of Tank	6'1"
G.	Spill Prevention Equipment Y/N	No
H·	Overfill Prevention Equipment Y/N	No
I.	Method of Closure Removed/Filled	Removed
J _.	Date Tanks Removed/Filled	11/12/2012
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

1361

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 1361Cardinal was removed from the ground and disposed

at a Subtitle "D" landfill. See Attachment "A".

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) UST 1361Cardinal was previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		1361 Cardinal
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	No
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
I.	If any corrosion, pitting, or holes were observed, dea	scribe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?If yes, indicate depth and location on the site map.		х	
If yes, indicate depth and location on the site map.			
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		х	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		х	
If yes, indicate the stockpile location on the site map.			
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		x	
If yes, indicate location and thickness.			

IX. SITE CONDITIONS

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

В.

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
1361 Cardinal	Excav at fill end	Soil	Sandy	6'1"	11/12/12 1430 hrs	P. Shaw	
cardinar			1				
8					,		
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

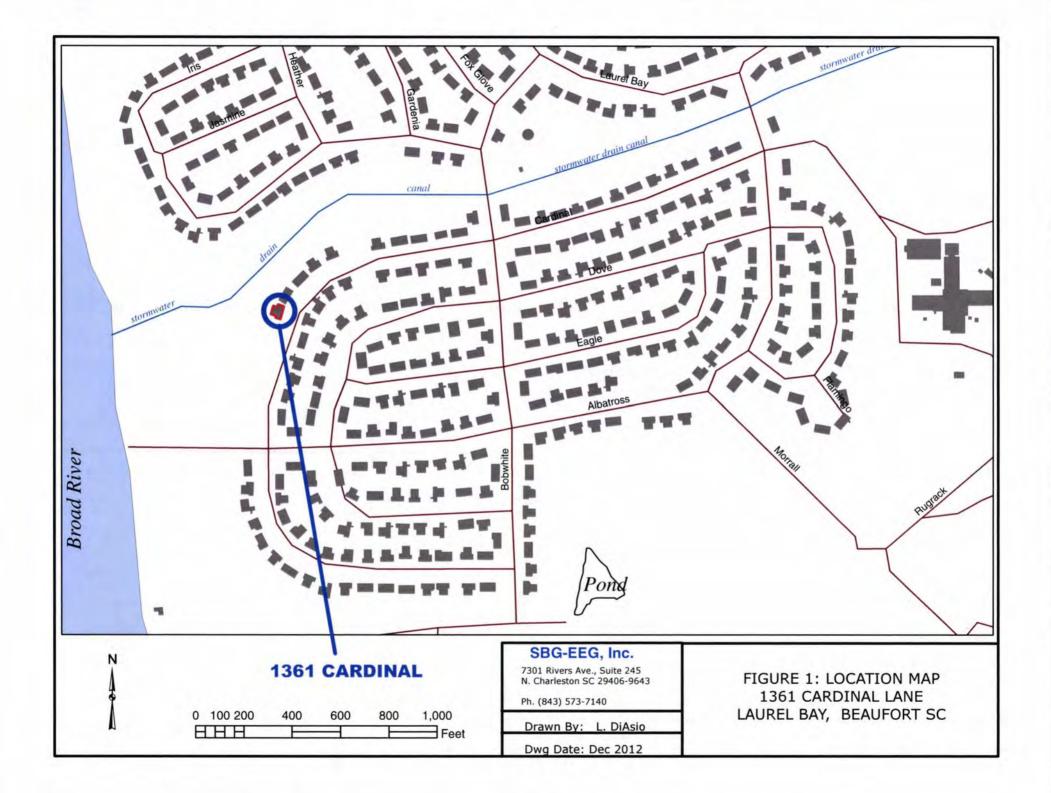
* = Depth Below the Surrounding Land Surface

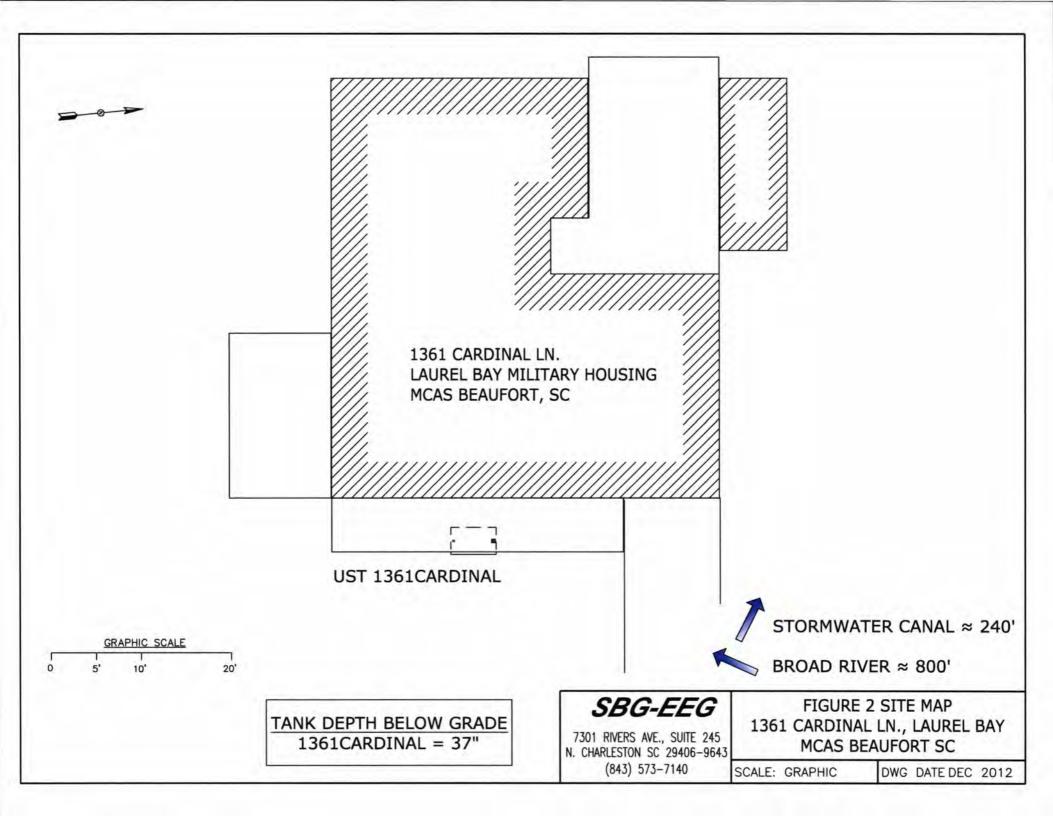
XI. SAMPLING METHODOLOGY

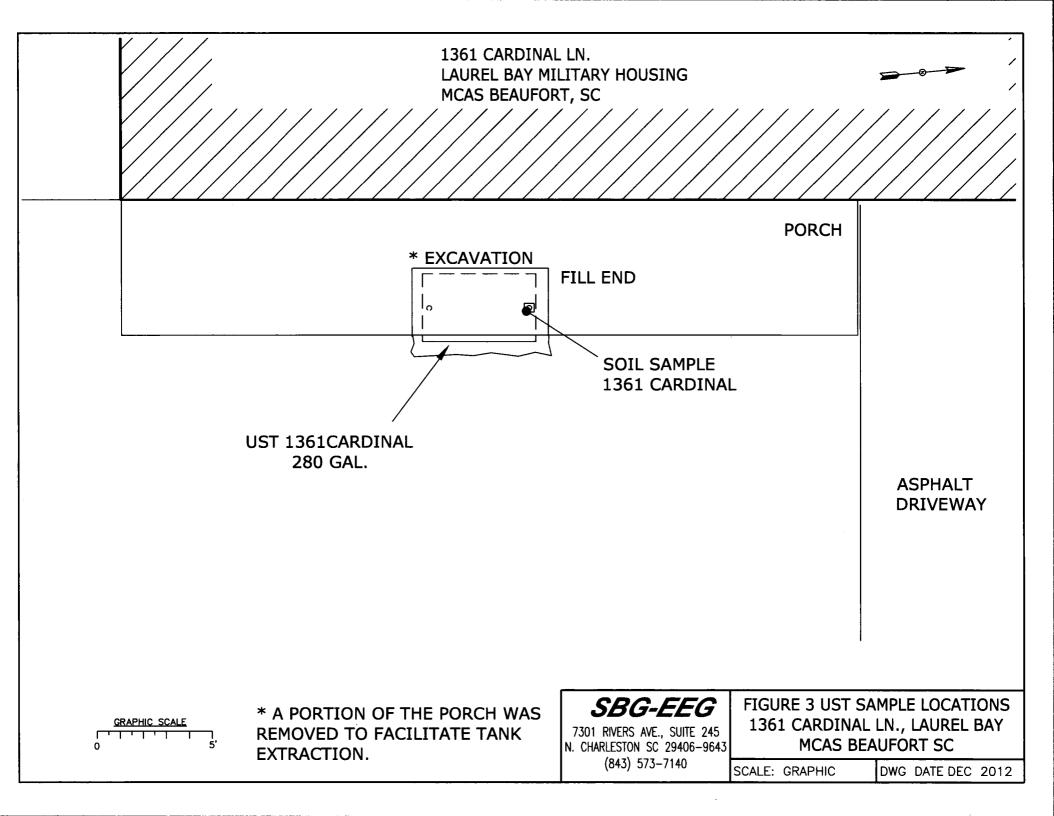
Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.

XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	*X	
	*Stormwater canal & Bro	ad Ri	ver
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		x
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, elec	trici	¢у
	cable & fiber optic If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP


You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

i

(Attach Site Map Here)

Picture 1: Location of UST 1361Cardinal.

Picture 2: UST 1361Cardinal.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

· · · · · · · · · · · · · · · · · · ·	<u></u>	 · · · · ·	 1	T	
CoC UST	1361Cardinal			<u> </u>	
Benzene	ND				
Toluene	1.74 mg/kg				
Ethylbenzene	6.17 mg/kg				
Xylenes 29.5 mg/kg					
Naphthalene	14.7 mg/kg				
Benzo (a) anthracene	ND				
Benzo (b) fluoranthene	ND				
Benzo (k) fluoranthene	ND				
Chrysene ND					
Dibenz (a, h) anthracene	ND				
TPH (EPA 3550)				-	
CoC		 			
Benzene			 		
Toluene					
Ethylbenzene		:	 		
Xylenes			 		
Naphthalene			 		
Benzo (a) anthracene					
Benzo (b) fluoranthene					
Benzo (k) fluoranthene					
Chrysene					
Dibenz (a, h) anthracene					
TPH (EPA 3550)					

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W -1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-12211-1

TestAmerica Sample Delivery Group: 1063 Client Project/Site: Laurel Bay Housing Project

For:

LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask

The

Expert

Environmental Enterprise Group 10179 Highway 78 Ladson, South Carolina 29456

Attn: Mr. Tom McElwee

Kuth Hay

Authorized for release by: 11/30/2012 12:25:42 PM

Ken Hayes Project Manager I ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

.

Ē

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	13
	18
Chronicle	20
Method Summary	22
Certification Summary	23
Chain of Custody	24
Receipt Checklists	26

Sample Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-12211-1 SDG: 1063

1

l

ľ

L MAN

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-12211-1	1015 Foxglove	Solid	11/12/12 14:45	11/20/12 08:10
490-12211-2	1361 Cardinal	Solid	11/12/12 14:30	11/20/12 08:10
490-12211-3	1046 Gardenia	Solid	11/13/12 13:45	11/20/12 08:10
490-12211-4	1024 Foxglove	Solid	11/13/12 13:55	11/20/12 08:10
490-12211-5	1038 Iris	Solid	11/14/12 12:45	11/20/12 08:10
490-12211-6	1031 Foxglove	Solid	11/14/12 13:30	11/20/12 08:10
490-12211-7	1029 Foxglove	Solid	11/15/12 14:45	11/20/12 08:10
490-12211-7	1029 10291048	Solid	11/10/12 14:40	11120

TestAmerica Nashville

Case Narrative

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-12211-1 SDG: 1063

Job ID: 490-12211-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-12211-1

Comments

No additional comments.

Receipt

The samples were received on 11/20/2012 8:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 1361 Cardinal (490-12211-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 1046 Gardenia (490-12211-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 38791. See LCS/LCSD

Method(s) 8260B: The following sample(s) was diluted due to the nature of the sample matrix: 1031 Foxglove (490-12211-6). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 39051.

No other analytical or quality issues were noted.

GC/MS Semi VOA

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Definitions/Glossary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-12211-1 SDG: 1063

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
x	Surrogate is outside control limits

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Nashville

Client Sample ID: 1015 Foxglove

Date Collected: 11/12/12 14:45 Date Received: 11/20/12 08:10

Lab Sample ID: 490-12211-1 Matrix: Solid Percent Solids: 86.0

Ē

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.08	0.696	mg/Kg	¢.	11/20/12 16:30	11/26/12 18:25	1
Ethylbenzene	ND		2.08	0.696	mg/Kg	- Q	11/20/12 16:30	11/26/12 18:25	1
Naphthalene	2.54	J	5.19	1.76	mg/Kg	Q.	11/20/12 16:30	11/26/12 18:25	1
Toluene	ND		2.08	0.768	mg/Kg	Ċ.	11/20/12 16:30	11/26/12 18:25	1
Xylenes, Total	ND		5.19	0.696	mg/Kg	0	11/20/12 16:30	11/26/12 18:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 130				11/20/12 16:30	11/26/12 18:25	1
4-Bromofluorobenzene (Surr)	109		70 - 130				11/20/12 16:30	11/26/12 18:25	1
Dibromofluoromethane (Surr)	91		70 - 130				11/20/12 16:30	11/26/12 18:25	1
Toluene-d8 (Surr)	115		70 - 130				11/20/12 16:30	11/26/12 18:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0659	0.00984	mg/Kg	-62	11/23/12 11:00	11/25/12 16:53	1
Acenaphthylene	ND		0.0659	0.00886	mg/Kg	-121	11/23/12 11:00	11/25/12 16:53	1
Anthracene	ND		0.0659	0.00886	mg/Kg	ġ.	11/23/12 11:00	11/25/12 16:53	1
Benzo[a]anthracene	ND		0.0659	0.0148	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Benzo[a]pyrene	ND		0.0659	0.0118	mg/Kg	6,2	11/23/12 11:00	11/25/12 16:53	1
Benzo[b]fluoranthene	ND		0.0659	0.0118	mg/Kg	D.	11/23/12 11:00	11/25/12 16:53	1
Benzo[g,h,i]perylene	ND		0.0659	0.00886	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Benzo[k]fluoranthene	ND		0.0659	0.0138	mg/Kg	Ø	11/23/12 11:00	11/25/12 16:53	1
1-Methylnaphthalene	ND		0.0659	0.0138	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Pyrene	ND		0.0659	0.0118	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Phenanthrene	ND		0.0659	0.00886	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Chrysene	ND		0.0659	0.00886	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Dibenz(a,h)anthracene	ND		0.0659	0.00689	mg/Kg	¢	11/23/12 11:00	11/25/12 16:53	1
Fluoranthene	ND		0.0659	0.00886	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Fluorene	ND		0.0659	0.0118	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Indeno[1,2,3-cd]pyrene	ND		0.0659	0.00984	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
Naphthalene	ND		0.0659	0.00886	mg/Kg	0	11/23/12 11:00	11/25/12 16:53	1
2-Methylnaphthalene	ND		0.0659	0.0157	mg/Kg	G	11/23/12 11:00	11/25/12 16:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	68		29 - 120				11/23/12 11:00	11/25/12 16:53	1
Terphenyl-d14 (Surr)	80		13 - 120				11/23/12 11:00	11/25/12 16:53	1
Nitrobenzene-d5 (Surr)	60		27 - 120				11/23/12 11:00	11/25/12 16:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	86		0.10	0.10	%			11/21/12 11:06	1

Client Sample ID: 1361 Cardinal

Date Collected: 11/12/12 14:30 Date Received: 11/20/12 08:10

Method: 8260B

Analyte Benzene Ethylbenzene Naphthalene Toluene Xylenes, Total

11/20/12 08:10								Percent Soli	ds: 77.8	
3 - Volatile Organic	Compounds	(GC/MS)							-	Ē
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	ND		2.23	0.749	mg/Kg	\$	11/20/12 16:30	11/26/12 18:57	1	
	6.17		2.23	0.749	mg/Kg	\$	11/20/12 16:30	11/26/12 18:57	1	
	14.7		5.59	1.90	mg/Kg	2	11/20/12 16:30	11/26/12 18:57	1	8
	1.74	J	2.23	0.827	mg/Kg	\$	11/20/12 16:30	11/26/12 18:57	1	
	29.5		5.59	0.749	mg/Kg	¢	11/20/12 16:30	11/26/12 18:57	1	
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		70 - 130
4-Bromofluorobenzene (Surr)	395	x	70 - 130
Dibromofluoromethane (Surr)	93		70 - 130
Toluene-d8 (Surr)	123		70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0659	0.00983	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Acenaphthylene	0.0400	J	0.0659	0.00885	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Anthracene	ND		0.0659	0.00885	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Benzo[a]anthracene	ND		0.0659	0.0148	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Benzo[a]pyrene	ND		0.0659	0.0118	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Benzo[b]fluoranthene	ND		0.0659	0.0118	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Benzo[g,h,i]perylene	ND		0.0659	0.00885	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Benzo[k]fluoranthene	ND		0.0659	0.0138	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
1-Methylnaphthalene	ND		0.0659	0.0138	mg/Kg	0	11/23/12 11:00	11/25/12 17:58	1
Pyrene	0.126		0.0659	0.0118	mg/Kg	0	11/23/12 11:00	11/25/12 17:58	1
Phenanthrene	0.0563	J	0.0659	0.00885	mg/Kg	ø	11/23/12 11:00	11/25/12 17:58	1
Chrysene	ND		0.0659	0.00885	mg/Kg	0	11/23/12 11:00	11/25/12 17:58	1
Dibenz(a,h)anthracene	ND		0.0659	0.00688	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Fluoranthene	0.0353	J	0.0659	0.00885	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Fluorene	ND		0.0659	0.0118	mg/Kg	¢	11/23/12 11:00	11/25/12 17:58	1
Indeno[1,2,3-cd]pyrene	ND		0.0659	0.00983	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
Naphthalene	ND		0.0659	0.00885	mg/Kg	\$	11/23/12 11:00	11/25/12 17:58	1
2-Methylnaphthalene	ND		0.0659	0.0157	mg/Kg	4	11/23/12 11:00	11/25/12 17:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	68		29 - 120				11/23/12 11:00	11/25/12 17:58	1
Terphenyl-d14 (Surr)	90		13 - 120				11/23/12 11:00	11/25/12 17:58	1
Nitrobenzene-d5 (Surr)	52		27 - 120				11/23/12 11:00	11/25/12 17:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	78		0.10	0.10	%			11/21/12 11:06	1

Lab Sample ID: 490-12211-2 Matrix: Solid Percent Solids: 77.8

11/26/12 18:57

11/26/12 18:57

11/26/12 18:57

11/26/12 18:57

1

Ē

11/20/12 16:30

11/20/12 16:30

11/20/12 16:30

11/20/12 16:30

TestAmerica Nashville

Client Sample ID: 1046 Gardenia

Date Collected: 11/13/12 13:45 Date Received: 11/20/12 08:10

Lab Sample ID: 490-12211-3 Matrix: Solid

Percent Solids: 85.4

Ē

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.34	0.785	mg/Kg	¢1	11/20/12 16:30	11/26/12 21:33	1
Ethylbenzene	ND		2.34	0.785	mg/Kg	-33	11/20/12 16:30	11/26/12 21:33	1
Naphthalene	2.16	J	5.86	1.99	mg/Kg	Ø	11/20/12 16:30	11/26/12 21:33	1
Toluene	ND		2.34	0.867	mg/Kg	2	11/20/12 16:30	11/26/12 21:33	1
Xylenes, Total	ND		5.86	0.785	mg/Kg	0	11/20/12 16:30	11/26/12 21:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 130				11/20/12 16:30	11/26/12 21:33	1
4-Bromofluorobenzene (Surr)	141	x	70 - 130				11/20/12 16:30	11/26/12 21:33	1
Dibromofluoromethane (Surr)	93		70 - 130				11/20/12 16:30	11/26/12 21:33	1
Toluene-d8 (Surr)	112		70 - 130				11/20/12 16:30	11/26/12 21:33	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0667	0.00996	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
Acenaphthylene	ND		0.0667	0.00896	mg/Kg	ø	11/23/12 11:00	11/25/12 18:19	1
Anthracene	ND		0.0667	0.00896	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
Benzo[a]anthracene	ND		0.0667	0.0149	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
Benzo[a]pyrene	ND		0.0667	0.0120	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
Benzo[b]fluoranthene	ND		0.0667	0.0120	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
Benzo[g,h,i]perylene	ND		0.0667	0.00896	mg/Kg	<i>p</i>	11/23/12 11:00	11/25/12 18:19	1
Benzo[k]fluoranthene	ND		0.0667	0.0139	mg/Kg	ø	11/23/12 11:00	11/25/12 18:19	1
1-Methylnaphthalene	ND		0.0667	0.0139	mg/Kg	ø	11/23/12 11:00	11/25/12 18:19	1
Pyrene	ND		0.0667	0.0120	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
Phenanthrene	ND		0.0667	0.00896	mg/Kg	\$	11/23/12 11:00	11/25/12 18:19	1
Chrysene	ND		0.0667	0.00896	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
Dibenz(a,h)anthracene	ND		0.0667	0.00697	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
Fluoranthene	ND		0.0667	0.00896	mg/Kg	<i>p</i>	11/23/12 11:00	11/25/12 18:19	1
Fluorene	ND		0.0667	0.0120	mg/Kg	-0	11/23/12 11:00	11/25/12 18:19	1
Indeno[1,2,3-cd]pyrene	ND		0.0667	0.00996	mg/Kg	9	11/23/12 11:00	11/25/12 18:19	1
Naphthalene	ND		0.0667	0.00896	mg/Kg	0	11/23/12 11:00	11/25/12 18:19	1
2-Methylnaphthalene	ND		0.0667	0.0159	mg/Kg	ġ	11/23/12 11:00	11/25/12 18:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	62		29 - 120				11/23/12 11:00	11/25/12 18:19	1
Terphenyl-d14 (Surr)	79		13 - 120				11/23/12 11:00	11/25/12 18:19	1
Nitrobenzene-d5 (Surr)	54		27 - 120				11/23/12 11:00	11/25/12 18:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	85		0.10	0.10	%			11/21/12 11:06	1

Client Sample Results

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

Client Sample ID: 1024 Foxglove

Date Collected: 11/13/12 13:55 Date Received: 11/20/12 08:10

Lab Sample ID: 490-12211-4 Matrix: Solid Percent Solids: 96.6

Ē

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00230	0.000769	mg/Kg	¢	11/20/12 16:30	11/27/12 19:18	1
Ethylbenzene	ND		0.00230	0.000769	mg/Kg	-85	11/20/12 16:30	11/27/12 19:18	1
Naphthalene	ND		0.00574	0.00195	mg/Kg	Ø	11/20/12 16:30	11/27/12 19:18	1
Toluene	ND		0.00230	0.000849	mg/Kg	0	11/20/12 16:30	11/27/12 19:18	1
Xylenes, Total	ND		0.00574	0.000769	mg/Kg	-0	11/20/12 16:30	11/27/12 19:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70 - 130				11/20/12 16:30	11/27/12 19:18	1
4-Bromofluorobenzene (Surr)	105		70 - 130				11/20/12 16:30	11/27/12 19:18	1
Dibromofluoromethane (Surr)	97		70 - 130				11/20/12 16:30	11/27/12 19:18	1
Toluene-d8 (Surr)	94		70 - 130				11/20/12 16:30	11/27/12 19:18	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0658	0.00982	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Acenaphthylene	ND		0.0658	0.00884	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Anthracene	ND		0.0658	0.00884	mg/Kg	-01	11/23/12 11:00	11/25/12 18:41	1
Benzo[a]anthracene	ND		0.0658	0.0147	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Benzo[a]pyrene	ND		0.0658	0.0118	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Benzo[b]fluoranthene	ND		0.0658	0.0118	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Benzo[g,h,i]perylene	ND		0.0658	0.00884	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Benzo[k]fluoranthene	ND		0.0658	0.0137	mg/Kg	-10	11/23/12 11:00	11/25/12 18:41	1
1-Methylnaphthalene	ND		0.0658	0.0137	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Pyrene	ND		0.0658	0.0118	mg/Kg	-0	11/23/12 11:00	11/25/12 18:41	1
Phenanthrene	ND		0.0658	0.00884	mg/Kg	- 13-	11/23/12 11:00	11/25/12 18:41	1
Chrysene	ND		0.0658	0.00884	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Dibenz(a,h)anthracene	ND		0.0658	0.00687	mg/Kg	-0	11/23/12 11:00	11/25/12 18:41	1
Fluoranthene	ND		0.0658	0.00884	mg/Kg	-Ö	11/23/12 11:00	11/25/12 18:41	1
Fluorene	ND		0.0658	0.0118	mg/Kg	D	11/23/12 11:00	11/25/12 18:41	1
Indeno[1,2,3-cd]pyrene	ND		0.0658	0.00982	mg/Kg	0	11/23/12 11:00	11/25/12 18:41	1
Naphthalene	ND		0.0658	0.00884	mg/Kg	-65	11/23/12 11:00	11/25/12 18:41	1
2-Methylnaphthalene	ND		0.0658	0.0157	mg/Kg	-0	11/23/12 11:00	11/25/12 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	62		29 - 120				11/23/12 11:00	11/25/12 18:41	1
Terphenyl-d14 (Surr)	75		13 - 120				11/23/12 11:00	11/25/12 18:41	1
Nitrobenzene-d5 (Surr)	60		27 - 120				11/23/12 11:00	11/25/12 18:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	97		0.10	0.10	%			11/21/12 11:06	1

Client Sample ID: 1038 Iris Date Collected: 11/14/12 12:45 Date Received: 11/20/12 08:10

Lab Sample ID: 490-12211-5 Matrix: Solid Percent Solids: 85.0

Ε

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00243	0.000813	mg/Kg	10	11/20/12 16:30	11/27/12 19:45	1
Ethylbenzene	ND		0.00243	0.000813	mg/Kg	¢.	11/20/12 16:30	11/27/12 19:45	1
Naphthalene	ND		0.00607	0.00206	mg/Kg	ø	11/20/12 16:30	11/27/12 19:45	1
Toluene	ND		0.00243	0.000898	mg/Kg	-32	11/20/12 16:30	11/27/12 19:45	1
Xylenes, Total	ND		0.00607	0.000813	mg/Kg	0	11/20/12 16:30	11/27/12 19:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70 - 130				11/20/12 16:30	11/27/12 19:45	1
4-Bromofluorobenzene (Surr)	104		70 - 130				11/20/12 16:30	11/27/12 19:45	1
Dibromofluoromethane (Surr)	98		70 - 130				11/20/12 16:30	11/27/12 19:45	1
Toluene-d8 (Surr)	95		70 - 130				11/20/12 16:30	11/27/12 19:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0662	0.00989	mg/Kg	-\$	11/23/12 11:00	11/25/12 19:03	1
Acenaphthylene	ND		0.0662	0.00890	mg/Kg	-\$	11/23/12 11:00	11/25/12 19:03	1
Anthracene	ND		0.0662	0.00890	mg/Kg	÷.	11/23/12 11:00	11/25/12 19:03	1
Benzo[a]anthracene	ND		0.0662	0.0148	mg/Kg	0	11/23/12 11:00	11/25/12 19:03	1
Benzo[a]pyrene	ND		0.0662	0.0119	mg/Kg	0	11/23/12 11:00	11/25/12 19:03	1
Benzo[b]fluoranthene	ND		0.0662	0.0119	mg/Kg	0	11/23/12 11:00	11/25/12 19:03	1
Benzo[g,h,i]perylene	ND		0.0662	0.00890	mg/Kg	0	11/23/12 11:00	11/25/12 19:03	1
Benzo[k]fluoranthene	ND		0.0662	0.0138	mg/Kg	10	11/23/12 11:00	11/25/12 19:03	1
1-Methylnaphthalene	ND		0.0662	0.0138	mg/Kg	ø	11/23/12 11:00	11/25/12 19:03	1
Pyrene	ND		0.0662	0.0119	mg/Kg	0	11/23/12 11:00	11/25/12 19:03	1
Phenanthrene	ND		0.0662	0.00890	mg/Kg	0	11/23/12 11:00	11/25/12 19:03	1
Chrysene	ND		0.0662	0.00890	mg/Kg	ø	11/23/12 11:00	11/25/12 19:03	1
Dibenz(a,h)anthracene	ND		0.0662	0.00692	mg/Kg	0	11/23/12 11:00	11/25/12 19:03	1
Fluoranthene	ND		0.0662	0.00890	mg/Kg	ø	11/23/12 11:00	11/25/12 19:03	1
Fluorene	ND		0.0662	0.0119	mg/Kg	÷	11/23/12 11:00	11/25/12 19:03	1
Indeno[1,2,3-cd]pyrene	ND		0.0662	0.00989	mg/Kg	\$	11/23/12 11:00	11/25/12 19:03	1
Naphthalene	ND		0.0662	0.00890	mg/Kg	0	11/23/12 11:00	11/25/12 19:03	1
2-Methylnaphthalene	ND		0.0662	0.0158	mg/Kg	¢	11/23/12 11:00	11/25/12 19:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	72		29 - 120				11/23/12 11:00	11/25/12 19:03	1
Terphenyl-d14 (Surr)	84		13 - 120				11/23/12 11:00	11/25/12 19:03	1
Nitrobenzene-d5 (Surr)	67		27 - 120				11/23/12 11:00	11/25/12 19:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	85		0.10	0.10	%			11/21/12 11:06	1

Client Sample ID: 1031 Foxglove Date Collected: 11/14/12 13:30

Date Received: 11/20/12 08:10

Lab Sample ID: 490-12211-6 Matrix: Solid Percent Solide: 70.0

Percent Solids: 79.9

Ē

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.130	0.0443	mg/Kg	<i>\$</i> .	11/20/12 16:28	11/27/12 20:39	1
Ethylbenzene	ND		0.130	0.0443	mg/Kg	0.	11/20/12 16:28	11/27/12 20:39	1
Naphthalene	0.133	J	0.326	0.111	mg/Kg	۵	11/20/12 16:28	11/27/12 20:39	1
Toluene	ND		0.130	0.0482	mg/Kg	\$	11/20/12 16:28	11/27/12 20:39	1
Xylenes, Total	ND		0.326	0.0443	mg/Kg	¢	11/20/12 16:28	11/27/12 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130				11/20/12 16:28	11/27/12 20:39	1
4-Bromofluorobenzene (Surr)	113		70 - 130				11/20/12 16:28	11/27/12 20:39	1
Dibromofluoromethane (Surr)	92		70 - 130				11/20/12 16:28	11/27/12 20:39	1
Toluene-d8 (Surr)	97		70 - 130				11/20/12 16:28	11/27/12 20:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.0775		0.0666	0.00994	mg/Kg	4	11/23/12 11:00	11/25/12 19:24	1
Acenaphthylene	0.0389	J	0.0666	0.00895	mg/Kg	ġ.	11/23/12 11:00	11/25/12 19:24	1
Anthracene	0.144		0.0666	0.00895	mg/Kg	0	11/23/12 11:00	11/25/12 19:24	1
Benzo[a]anthracene	0.0491	J	0.0666	0.0149	mg/Kg	2	11/23/12 11:00	11/25/12 19:24	1
Benzo[a]pyrene	ND		0.0666	0.0119	mg/Kg	(Ç	11/23/12 11:00	11/25/12 19:24	1
Benzo[b]fluoranthene	ND		0.0666	0.0119	mg/Kg	\$	11/23/12 11:00	11/25/12 19:24	1
Benzo[g,h,i]perylene	ND		0.0666	0.00895	mg/Kg	Ó	11/23/12 11:00	11/25/12 19:24	1
Benzo[k]fluoranthene	ND		0.0666	0.0139	mg/Kg	12	11/23/12 11:00	11/25/12 19:24	1
1-Methylnaphthalene	0.381		0.0666	0.0139	mg/Kg	0	11/23/12 11:00	11/25/12 19:24	1
Pyrene	0.318		0.0666	0.0119	mg/Kg	ø	11/23/12 11:00	11/25/12 19:24	1
Phenanthrene	0.933		0.0666	0.00895	mg/Kg	0	11/23/12 11:00	11/25/12 19:24	1
Chrysene	0.0459	J	0.0666	0.00895	mg/Kg	P	11/23/12 11:00	11/25/12 19:24	1
Dibenz(a,h)anthracene	ND		0.0666	0.00696	mg/Kg	¢	11/23/12 11:00	11/25/12 19:24	1
Fluoranthene	0.496		0.0666	0.00895	mg/Kg	0	11/23/12 11:00	11/25/12 19:24	1
Fluorene	0.176		0.0666	0.0119	mg/Kg	io.	11/23/12 11:00	11/25/12 19:24	1
Indeno[1,2,3-cd]pyrene	ND		0.0666	0.00994	mg/Kg	0	11/23/12 11:00	11/25/12 19:24	1
Naphthalene	ND		0.0666	0.00895	mg/Kg	0	11/23/12 11:00	11/25/12 19:24	1
2-Methylnaphthalene	0.659		0.0666	0.0159	mg/Kg	¢	11/23/12 11:00	11/25/12 19:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	58		29 - 120				11/23/12 11:00	11/25/12 19:24	1
Terphenyl-d14 (Surr)	68		13 - 120				11/23/12 11:00	11/25/12 19:24	1
Nitrobenzene-d5 (Surr)	56		27 - 120				11/23/12 11:00	11/25/12 19:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	80		0.10	0.10	%			11/21/12 11:06	1

Client Sample Results

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

Client Sample ID: 1029 Foxglove Date Collected: 11/15/12 14:45

Lab Sample ID: 490-12211-7 Matrix: Solid Percent Solids: 92.9

E

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00223	0.000748	mg/Kg	Ø	11/20/12 16:30	11/27/12 20:12	1
Ethylbenzene	ND		0.00223	0.000748	mg/Kg	352	11/20/12 16:30	11/27/12 20:12	1
Naphthalene	ND		0.00558	0.00190	mg/Kg	\$	11/20/12 16:30	11/27/12 20:12	1
Toluene	ND		0.00223	0.000826	mg/Kg	\$	11/20/12 16:30	11/27/12 20:12	1
Xylenes, Total	ND		0.00558	0.000748	mg/Kg	ø	11/20/12 16:30	11/27/12 20:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		70 - 130				11/20/12 16:30	11/27/12 20:12	1
4-Bromofluorobenzene (Surr)	106		70 - 130				11/20/12 16:30	11/27/12 20:12	1
Dibromofluoromethane (Surr)	98		70 - 130				11/20/12 16:30	11/27/12 20:12	1
Toluene-d8 (Surr)	95		70 - 130				11/20/12 16:30	11/27/12 20:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0658	0.00981	mg/Kg	4	11/23/12 11:00	11/25/12 19:46	1
Acenaphthylene	ND		0.0658	0.00883	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Anthracene	ND		0.0658	0.00883	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Benzo[a]anthracene	ND		0.0658	0.0147	mg/Kg	¢.	11/23/12 11:00	11/25/12 19:46	1
Benzo[a]pyrene	ND		0.0658	0.0118	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Benzo[b]fluoranthene	ND		0.0658	0.0118	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Benzo[g,h,i]perylene	ND		0.0658	0.00883	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Benzo[k]fluoranthene	ND		0.0658	0.0137	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
1-Methylnaphthalene	ND		0.0658	0.0137	mg/Kg	¢	11/23/12 11:00	11/25/12 19:46	1
Pyrene	ND		0.0658	0.0118	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Phenanthrene	ND		0.0658	0.00883	mg/Kg	ø	11/23/12 11:00	11/25/12 19:46	1
Chrysene	ND		0.0658	0.00883	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Dibenz(a,h)anthracene	ND		0.0658	0.00687	mg/Kg	ø	11/23/12 11:00	11/25/12 19:46	1
Fluoranthene	ND		0.0658	0.00883	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Fluorene	ND		0.0658	0.0118	mg/Kg	\$	11/23/12 11:00	11/25/12 19:46	1
Indeno[1,2,3-cd]pyrene	ND		0.0658	0.00981	mg/Kg	÷	11/23/12 11:00	11/25/12 19:46	1
Naphthalene	ND		0.0658	0.00883	mg/Kg	Q.	11/23/12 11:00	11/25/12 19:46	1
2-Methylnaphthalene	ND		0.0658	0.0157	mg/Kg	۵	11/23/12 11:00	11/25/12 19:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	64		29 - 120				11/23/12 11:00	11/25/12 19:46	1
Terphenyl-d14 (Surr)	76		13 - 120				11/23/12 11:00	11/25/12 19:46	1
Nitrobenzene-d5 (Surr)	58		27 - 120				11/23/12 11:00	11/25/12 19:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	93		0.10	0.10	%			11/21/12 11:06	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-38791/8							Client Sa	ample ID: Metho	d Blank
Matrix: Solid								Prep Type: T	otal/NA
Analysis Batch: 38791									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.00	0.670	mg/Kg			11/26/12 14:15	1
Ethylbenzene	ND		2.00	0.670	mg/Kg			11/26/12 14:15	1
Naphthalene	ND		5.00	1.70	mg/Kg			11/26/12 14:15	1
Toluene	ND		2.00	0.740	mg/Kg			11/26/12 14:15	1
Xylenes, Total	ND		5.00	0.670	mg/Kg			11/26/12 14:15	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 130					11/26/12 14:15	1
Contraction of the Contract of	100								

1,2-Dichloroethane-d4 (Surr)	105	70 - 130	11/26/12 14:15	1
4-Bromofluorobenzene (Surr)	107	70 - 130	11/26/12 14:15	1
Dibromofluoromethane (Surr)	92	70 - 130	11/26/12 14:15	1
Toluene-d8 (Surr)	112	70 - 130	11/26/12 14:15	1

Lab Sample ID: LCS 490-38791/5 Matrix: Solid

Analysis Batch: 38791

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.04096		mg/Kg		82	75 - 127
Ethylbenzene	0.0500	0.05411		mg/Kg		108	80 - 134
Naphthalene	0.0500	0.05253		mg/Kg		105	69 - 150
Toluene	0.0500	0.04974		mg/Kg		99	80 - 132
Xylenes, Total	0.150	0.1608		mg/Kg		107	80 - 137

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		70 - 130
4-Bromofluorobenzene (Surr)	109		70 - 130
Dibromofluoromethane (Surr)	92		70 - 130
Toluene-d8 (Surr)	114		70 - 130

Lab Sample ID: LCSD 490-38791/6 Matrix: Solid

Analysis Batch: 38791

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0500	0.04133		mg/Kg		83	75 - 127	1	50
Ethylbenzene			0.0500	0.05162		mg/Kg		103	80 - 134	5	50
Naphthalene			0.0500	0.05170		mg/Kg		103	69 - 150	2	50
Toluene			0.0500	0.04708		mg/Kg		94	80 - 132	5	50
Xylenes, Total			0.150	0.1532		mg/Kg		102	80 - 137	5	50
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	103		70 - 130								

70 - 130 70 - 130

70 - 130

TestAmerica Job ID: 490-12211-1 SDG: 1063

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

30

106

92

106

ľ

Ľ

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-39051/6							Client S	ample ID: Metho	d Blank
Matrix: Solid								Prep Type: T	otal/NA
Analysis Batch: 39051									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0335	mg/Kg			11/27/12 12:05	1
Ethylbenzene	ND		0.100	0.0335	mg/Kg			11/27/12 12:05	1
Naphthalene	ND		0.250	0.0850	mg/Kg			11/27/12 12:05	1
Toluene	ND		0.100	0.0370	mg/Kg			11/27/12 12:05	1
Xylenes, Total	ND		0.250	0.0335	mg/Kg			11/27/12 12:05	1
	мв	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 130					11/27/12 12:05	1
4-Bromofluorobenzene (Surr)	104		70 - 130					11/27/12 12:05	1
Dibromofluoromethane (Surr)	94		70 - 130					11/27/12 12:05	1
Toluene-d8 (Surr)	96		70 - 130					11/27/12 12:05	1
Lab Sample ID: MB 490-39051/7							Client S	ample ID: Metho	d Blank
Matrix: Solid								Prep Type: T	
Analysis Batch: 39051									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			11/27/12 12:32	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			11/27/12 12:32	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			11/27/12 12:32	1
Toluene	ND		0.00200	0.000740	mg/Kg			11/27/12 12:32	1
Xylenes, Total	ND		0.00500	0.000670	mg/Kg			11/27/12 12:32	1
	мв	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 130					11/27/12 12:32	1

Surrogate	Tokecovery Quanner	Linnis	Frepared Analyzeu	Dirac
1,2-Dichloroethane-d4 (Surr)	91	70 - 130	11/27/12 12:32	1
4-Bromofluorobenzene (Surr)	107	70 - 130	11/27/12 12:32	1
Dibromofluoromethane (Surr)	98	70 - 130	11/27/12 12:32	1
Toluene-d8 (Surr)	97	70 - 130	11/27/12 12:32	1

Lab Sample ID: LCS 490-39051/3 Matrix: Solid

Analysis Batch: 39051

Spike	LCS LCS				%Rec.	
Added	Result Qualifie	r Unit	D	%Rec	Limits	
0.0500	0.05012	mg/Kg		100	75 - 127	
0.0500	0.04909	mg/Kg		98	80 - 134	
0.0500	0.05516	mg/Kg		110	69 - 150	
0.0500	0.04878	mg/Kg		98	80 - 132	
0.150	0.1431	mg/Kg		95	80 - 137	
	Added 0.0500 0.0500 0.0500 0.0500 0.150	Added Result Qualifie 0.0500 0.05012 0.0500 0.0500 0.04909 0.05516 0.0500 0.04878 0.04878 0.150 0.1431 0.0431	Added Result Qualifier Unit 0.0500 0.05012 mg/Kg 0.0500 0.04909 mg/Kg 0.0500 0.05516 mg/Kg 0.0500 0.04878 mg/Kg 0.150 0.1431 mg/Kg	Added Result Qualifier Unit D 0.0500 0.05012 mg/Kg 0.0500 0.04909 mg/Kg 0.0500 0.05516 mg/Kg 0.0500 0.04878 mg/Kg 0.150 0.1431 mg/Kg	Added Result Qualifier Unit D %Rec 0.0500 0.05012 mg/Kg 100 0.0500 0.04909 mg/Kg 98 0.0500 0.05516 mg/Kg 110 0.0500 0.04878 mg/Kg 98 0.150 0.1431 mg/Kg 95	Added Result Qualifier Unit D %Rec Limits 0.0500 0.05012 mg/Kg 100 75 - 127 0.0500 0.04909 mg/Kg 98 80 - 134 0.0500 0.05516 mg/Kg 110 69 - 150 0.0500 0.04878 mg/Kg 98 80 - 132 0.150 0.1431 mg/Kg 95 80 - 137

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	106		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
Toluene-d8 (Surr)	95		70 - 130

Client Sample ID: Lab Control Sample Prep Type: Total/NA

TestAmerica Nashville

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 490-39051/4 Matrix: Solid

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

		Spike	LCSD	LCSD				%Rec.		RPD
		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
		0.0500	0.05035		mg/Kg		101	75 - 127	0	50
		0.0500	0.04961		mg/Kg		99	80 - 134	1	50
		0.0500	0.05590		mg/Kg		112	69 - 150	1	50
		0.0500	0.04917		mg/Kg		98	80 - 132	1	50
		0.150	0.1440		mg/Kg		96	80 - 137	1	50
LCSD	LCSD									
%Recovery	Qualifier	Limits								
94		70 - 130								
108		70 - 130								
97		70 - 130								
96		70 - 130								
	%Recovery 94 108 97	108 97	Added 0.0500 0.0500 0.0500 0.0500 0.0500 0.150 LCSD LCSD %Recovery Qualifier Limits 94 70 - 130 108 70 - 130 97 70 - 130	Added Result 0.0500 0.05035 0.0500 0.04961 0.0500 0.0590 0.0500 0.0590 0.0500 0.04917 0.150 0.1440 LCSD LCSD %Recovery Qualifier Limits 94 70 - 130 108 70 - 130 97 70 - 130	Added Result Qualifier 0.0500 0.05035 0.05035 0.0500 0.04961 0.0500 0.0500 0.05590 0.0500 0.0500 0.04917 0.150 0.150 0.1440 0.150 LCSD LCSD LCSD %Recovery Qualifier Limits 94 70 - 130 108 70 - 130 97 70 - 130	Added Result Qualifier Unit 0.0500 0.05035 mg/Kg 0.0500 0.04961 mg/Kg 0.0500 0.05590 mg/Kg 0.0500 0.04917 mg/Kg 0.150 0.1440 mg/Kg 0.150 0.1440 mg/Kg %Recovery Qualifier Limits 94 70 - 130 108 70 - 130 70 - 130 97	Added Result Qualifier Unit D 0.0500 0.05035 mg/Kg 0.0500 0.04961 mg/Kg 0.0500 0.0590 mg/Kg 0.0500 0.04961 mg/Kg 0.0500 0.04961 mg/Kg 0.0500 0.04917 mg/Kg 0.150 0.1440 mg/Kg kcsb LCSD LCSD %Recovery Qualifier Limits 94 70 - 130	Added Result Qualifier Unit D %Rec 0.0500 0.05035 mg/Kg 101 0.0500 0.04961 mg/Kg 99 0.0500 0.05590 mg/Kg 112 0.0500 0.04917 mg/Kg 98 0.150 0.1440 mg/Kg 96 LCSD LCSD LCSD LImits P P 94 70 - 130 70 - 130 70 - 130 70 - 130 97 70 - 130 70 - 130 70 - 130 70 - 130	Added Result Qualifier Unit D %Rec Limits 0.0500 0.05035 mg/Kg 101 75 - 127 0.0500 0.04961 mg/Kg 99 80 - 134 0.0500 0.05590 mg/Kg 112 69 - 150 0.0500 0.04917 mg/Kg 98 80 - 132 0.150 0.1440 mg/Kg 96 80 - 137 LCSD LCSD LCSD Mathematican framework Limits Mathematican framework Mathematican framework Mathematican framework Mathematican framework Mathematican framework Mathematican framework Mathematican framework Mathematican framework Mathmathm	Added Result Qualifier Unit D %Rec Limits RPD 0.0500 0.05035 mg/Kg 101 75 - 127 0 0.0500 0.04961 mg/Kg 99 80 - 134 1 0.0500 0.0590 mg/Kg 112 69 - 150 1 0.0500 0.04917 mg/Kg 98 80 - 132 1 0.0500 0.04917 mg/Kg 96 80 - 137 1 LCSD LCSD 1 0.150 0.1440 mg/Kg 96 80 - 137 1 LCSD LCSD 1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 490-38418/1-A Matrix: Solid Analysis Batch: 38717

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 38418

1

	MID .	in D							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Anthracene	ND		0.0670	0.00900	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Pyrene	ND		0.0670	0.0120	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Chrysene	ND		0.0670	0.00900	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Fluorene	ND		0.0670	0.0120	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		11/23/12 11:00	11/25/12 16:31	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	66		29 - 120				11/23/12 11:00	11/25/12 16:31	1
Terphenyl-d14 (Surr)	80		13 - 120				11/23/12 11:00	11/25/12 16:31	1
Nitrobenzene-d5 (Surr)	64		27 - 120				11/23/12 11:00	11/25/12 16:31	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS Matrix: Solid Analysis Batch: 387

Analyte Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene 1-Methylnaphthalene

Pyrene Phenanthrene Chrysene

Fluorene

Naphthalene

Dibenz(a,h)anthracene Fluoranthene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

S 490-38418/2-A					Client	Sample	ID: Lab Control Sample	
							Prep Type: Total/NA	2
3717							Prep Batch: 38418	
	Spike	LCS	LCS				%Rec.	۰.
	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	1.67	1.351		mg/Kg		81	38 - 120	
	1.67	1.340		mg/Kg		80	46 - 124	
	1.67	1.154		mg/Kg		69	45 - 120	
	1.67	1.245		mg/Kg		75	45 - 120	
	1.67	1.161		mg/Kg		70	42 - 120	
	1.67	1.397		mg/Kg		84	38 - 120	
	1.67	1.178		mg/Kg		71	42 - 120	
	1.67	1.171		mg/Kg		70	32 - 120	
	1.67	1.138		mg/Kg		68	43 - 120	
	1.67	1.325		mg/Kg		80	45 - 120	
	1.67	1.204		mg/Kg		72	43 - 120	
	1.67	1.334		mg/Kg		80	32 - 128	
	1.67	1.354		mg/Kg		81	46 - 120	
	1.67	1.226		mg/Kg		74	42 - 120	

1.339

1.312

1.211

mg/Kg

mg/Kg

mg/Kg

80

79

73

41 - 121

32 - 120

28 - 120

Client Sample ID: 1015 Foxglove

Prep Type: Total/NA

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	62		29 - 120
Terphenyl-d14 (Surr)	67		13 - 120
Nitrobenzene-d5 (Surr)	54		27 - 120

Lab Sample ID: 490-12211-1 MS Matrix: Solid

Analysis Batch: 38717

Analysis Batch: 38717	Sample	Sample	Spike	MS	MS				Prep Batch: 38418 %Rec.
Analyte	Result		Added		Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	ND		1.65	1.496		mg/Kg	Ø	91	25 - 120
Anthracene	ND		1.65	1.533		mg/Kg	-22	93	28 - 125
Benzo[a]anthracene	ND		1.65	1.332		mg/Kg	\$2	81	23 - 120
Benzo[a]pyrene	ND		1.65	1.440		mg/Kg	22	87	15 - 128
Benzo[b]fluoranthene	ND		1.65	1.327		mg/Kg	ġ.	80	12 - 133
Benzo[g,h,i]perylene	ND		1.65	1.546		mg/Kg	ō	94	22 - 120
Benzo[k]fluoranthene	ND		1.65	1.357		mg/Kg	¢	82	28 - 120
1-Methylnaphthalene	ND		1.65	1.310		mg/Kg	\$	79	10 - 120
Pyrene	ND		1.65	1.308		mg/Kg	¢	79	20 - 123
Phenanthrene	ND		1.65	1.519		mg/Kg	¢Σ	92	21 - 122
Chrysene	ND		1.65	1.365		mg/Kg	¢.	83	20 - 120
Dibenz(a,h)anthracene	ND		1.65	1.489		mg/Kg	0	90	12 - 128
Fluoranthene	ND		1.65	1.523		mg/Kg	-0	92	10 - 143
Fluorene	ND		1.65	1.362		mg/Kg	\$	83	20 - 120
Indeno[1,2,3-cd]pyrene	ND		1.65	1.516		mg/Kg	-32	92	22 - 121
Naphthalene	ND		1.65	1.471		mg/Kg	¢.	89	10 - 120
2-Methylnaphthalene	ND		1.65	1.379		mg/Kg	ø	84	13 - 120

1.67

1.67

1.67

TestAmerica Nashville

TestAmerica Job ID: 490-12211-1 SDG: 1063

Client Sample ID: 1015 Foxglove

Client Sample ID: 1015 Foxglove

Prep Type: Total/NA

Prep Type: Total/NA

,

Ē

Prep Batch: 38418

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

59

67

57

Lab Sample ID: 490-12211-1 MS Matrix: Solid Analysis Batch: 38717

MS	MS	
%Recovery	Qualifier	Limits
65		29 - 120
74		13 - 120
59		27 - 120
	%Recovery 65 74	74

Lab Sample ID: 490-12211-1 MSD Matrix: Solid

Analysis Batch: 38717									Prep	Batch:	38418
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		1.66	1.420		mg/Kg	ø	86	25 - 120	5	50
Anthracene	ND		1.66	1.425		mg/Kg	Ø	86	28 - 125	7	49
Benzo[a]anthracene	ND		1.66	1.245		mg/Kg	\$	75	23 - 120	7	50
Benzo[a]pyrene	ND		1.66	1.366		mg/Kg	0	82	15 - 128	5	50
Benzo[b]fluoranthene	ND		1.66	1.241		mg/Kg	9	75	12 - 133	7	50
Benzo[g,h,i]perylene	ND		1.66	1.486		mg/Kg	¢.	90	22 - 120	4	50
Benzo[k]fluoranthene	ND		1.66	1.271		mg/Kg	Ŕ	77	28 - 120	7	45
1-Methylnaphthalene	ND		1.66	1.237		mg/Kg	\$	75	10 - 120	6	50
Pyrene	ND		1.66	1.230		mg/Kg	ġ.	74	20 - 123	6	50
Phenanthrene	ND		1.66	1.408		mg/Kg	\$	85	21 - 122	8	50
Chrysene	ND		1.66	1.280		mg/Kg	ø	77	20 - 120	6	49
Dibenz(a,h)anthracene	ND		1.66	1.429		mg/Kg	0	86	12 - 128	4	50
Fluoranthene	ND		1.66	1.442		mg/Kg	\$	87	10 - 143	5	50
Fluorene	ND		1.66	1,277		mg/Kg	Ó	77	20 - 120	6	50
Indeno[1,2,3-cd]pyrene	ND		1.66	1.433		mg/Kg	à	86	22 - 121	6	50
Naphthalene	ND		1.66	1.406		mg/Kg	\$	85	10 - 120	5	50
2-Methylnaphthalene	ND		1.66	1.290		mg/Kg	¢	78	13 - 120	7	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Method: Moisture - Percent Moisture

2-Fluorobiphenyl (Surr)

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

Lab Sample ID: 490-12185-C-8 DU Matrix: Solid							Client Sample ID: Dup Prep Type: To	
Analysis Batch: 38035								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	75		74		%		2	20

29 - 120 13 - 120

27 - 120

QC Association Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-12211-1 SDG: 1063

E

GC/MS VOA

Prep Batch: 37825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-12211-6	1031 Foxglove	Total/NA	Solid	5035	
rep Batch: 37827					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-12211-1	1015 Foxglove	Total/NA	Solid	5035	
490-12211-2	1361 Cardinal	Total/NA	Solid	5035	
490-12211-3	1046 Gardenia	Total/NA	Solid	5035	
490-12211-4	1024 Foxglove	Total/NA	Solid	5035	
490-12211-5	1038 Iris	Total/NA	Solid	5035	
490-12211-7	1029 Foxglove	Total/NA	Solid	5035	
nalysis Batch: 38791	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-12211-1	1015 Foxglove	Total/NA	Solid	8260B	3782
490-12211-2	1361 Cardinal	Total/NA	Solid	8260B	3782
490-12211-3	1046 Gardenia	Total/NA	Solid	8260B	3782
LCS 490-38791/5	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-38791/6	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-38791/8	Method Blank	Total/NA	Solid	8260B	
Analysis Batch: 39051	í de la compañía de l				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
490-12211-4	1024 Foxglove	Total/NA	Solid	8260B	3782
490-12211-5	1038 Iris	Total/NA	Solid	8260B	3782
490-12211-6	1031 Foxglove	Total/NA	Solid	8260B	3782
490-12211-7	1029 Foxglove	Total/NA	Solid	8260B	3782
LCS 490-39051/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-39051/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-39051/6	Method Blank	Total/NA	Solid	8260B	
MB 490-39051/7	Method Blank	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 38418

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-12211-1	1015 Foxglove	Total/NA	Solid	3550C	
490-12211-1 MS	1015 Foxglove	Total/NA	Solid	3550C	
490-12211-1 MSD	1015 Foxglove	Total/NA	Solid	3550C	
490-12211-2	1361 Cardinal	Total/NA	Solid	3550C	
490-12211-3	1046 Gardenia	Total/NA	Solid	3550C	
490-12211-4	1024 Foxglove	Total/NA	Solid	3550C	
490-12211-5	1038 Iris	Total/NA	Solid	3550C	
490-12211-6	1031 Foxglove	Total/NA	Solid	3550C	
490-12211-7	1029 Foxglove	Total/NA	Solid	3550C	
LCS 490-38418/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-38418/1-A	Method Blank	Total/NA	Solid	3550C	
Analysis Batch: 38717	,				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-12211-1	1015 Foxglove	Total/NA	Solid	8270D	38418

TestAmerica Nashville

QC Association Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

GC/MS Semi VOA (Continued)

Analysis Batch: 38717 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-12211-1 MS	1015 Foxglove	Total/NA	Solid	8270D	38418
490-12211-1 MSD	1015 Foxglove	Total/NA	Solid	8270D	38418
490-12211-2	1361 Cardinal	Total/NA	Solid	8270D	38418
490-12211-3	1046 Gardenia	Total/NA	Solid	8270D	38418
490-12211-4	1024 Foxglove	Total/NA	Solid	8270D	38418
490-12211-5	1038 Iris	Total/NA	Solid	8270D	38418
490-12211-6	1031 Foxglove	Total/NA	Solid	8270D	38418
490-12211-7	1029 Foxglove	Total/NA	Solid	8270D	38418
LCS 490-38418/2-A	Lab Control Sample	Total/NA	Solid	8270D	38418
MB 490-38418/1-A	Method Blank	Total/NA	Solid	8270D	38418

General Chemistry

Analysis Batch: 38035

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-12185-C-8 DU	Duplicate	Total/NA	Solid	Moisture	
490-12211-1	1015 Foxglove	Total/NA	Solid	Moisture	
490-12211-2	1361 Cardinal	Total/NA	Solid	Moisture	
490-12211-3	1046 Gardenia	Total/NA	Solid	Moisture	
490-12211-4	1024 Foxglove	Total/NA	Solid	Moisture	
490-12211-5	1038 Iris	Total/NA	Solid	Moisture	
490-12211-6	1031 Foxglove	Total/NA	Solid	Moisture	
490-12211-7	1029 Foxglove	Total/NA	Solid	Moisture	

TestAmerica Job ID: 490-12211-1 SDG: 1063

ł

Client Sample ID: 1015 Foxglove

Date Collected: 11/12/12 14:45 Date Received: 11/20/12 08:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			37827	11/20/12 16:30	ML	TAL NSH
Total/NA	Analysis	8260B		1	38791	11/26/12 18:25	КК	TAL NSH
Total/NA	Prep	3550C			38418	11/23/12 11:00	AK	TAL NSH
Total/NA	Analysis	8270D		1	38717	11/25/12 16:53	KP	TAL NSH
Total/NA	Analysis	Moisture		1	38035	11/21/12 11:06	DF	TAL NSH

Client Sample ID: 1361 Cardinal Date Collected: 11/12/12 14:30

Date Received: 11/20/12 08:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			37827	11/20/12 16:30	ML	TAL NSH
Total/NA	Analysis	8260B		1	38791	11/26/12 18:57	кк	TAL NSH
Total/NA	Prep	3550C			38418	11/23/12 11:00	AK	TAL NSH
Total/NA	Analysis	8270D		1	38717	11/25/12 17:58	KP	TAL NSH
Total/NA	Analysis	Moisture		1	38035	11/21/12 11:06	DF	TAL NSH

Client Sample ID: 1046 Gardenia

Date Collected: 11/13/12 13:45 Date Received: 11/20/12 08:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			37827	11/20/12 16:30	ML	TAL NSH
Total/NA	Analysis	8260B		1	38791	11/26/12 21:33	КК	TAL NSH
Total/NA	Prep	3550C			38418	11/23/12 11:00	AK	TAL NSH
Total/NA	Analysis	8270D		1	38717	11/25/12 18:19	KP	TAL NSH
Total/NA	Analysis	Moisture		1	38035	11/21/12 11:06	DF	TAL NSH

Client Sample ID: 1024 Foxglove Date Collected: 11/13/12 13:55

Date Received: 11/20/12 08:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			37827	11/20/12 16:30	ML	TAL NSH
Total/NA	Analysis	8260B		1	39051	11/27/12 19:18	MH	TAL NSH
Total/NA	Prep	3550C			38418	11/23/12 11:00	AK	TAL NSH
Total/NA	Analysis	8270D		1	38717	11/25/12 18:41	KP	TAL NSH
Total/NA	Analysis	Moisture		1	38035	11/21/12 11:06	DF	TAL NSH

TestAmerica Job ID: 490-12211-1 SDG: 1063

Lab Sample ID: 490-12211-1

Lab Sample ID: 490-12211-2

Matrix: Solid Percent Solids: 86.0

Matrix: Solid

Percent Solids: 77.8

Lab Sample ID: 490-12211-3 Matrix: Solid

Lab Sample ID: 490-12211-4

Percent Solids: 85.4

Matrix: Solid

Percent Solids: 96.6

Client Sample ID: 1038 Iris Date Collected: 11/14/12 12:45

Date Received: 11/20/12 08:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			37827	11/20/12 16:30	ML	TAL NSH
Total/NA	Analysis	8260B		1	39051	11/27/12 19:45	MH	TAL NSH
Total/NA	Prep	3550C			38418	11/23/12 11:00	AK	TAL NSH
Total/NA	Analysis	8270D		1	38717	11/25/12 19:03	KP	TAL NSH
Total/NA	Analysis	Moisture		1	38035	11/21/12 11:06	DF	TAL NSH

Client Sample ID: 1031 Foxglove

Date Collected: 11/14/12 13:30

Date Received: 11/20/12 08:10

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			37825	11/20/12 16:28	ML	TAL NSH
Total/NA	Analysis	8260B		1	39051	11/27/12 20:39	MH	TAL NSH
Total/NA	Prep	3550C			38418	11/23/12 11:00	AK	TAL NSH
Total/NA	Analysis	8270D		1	38717	11/25/12 19:24	KP	TAL NSH
Total/NA	Analysis	Moisture		1	38035	11/21/12 11:06	DF	TAL NSH

Client Sample ID: 1029 Foxglove

Date Collected: 11/15/12 14:45 Date Received: 11/20/12 08:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			37827	11/20/12 16:30	ML	TAL NSH
Total/NA	Analysis	8260B		1	39051	11/27/12 20:12	MH	TAL NSH
Total/NA	Prep	3550C			38418	11/23/12 11:00	AK	TAL NSH
Total/NA	Analysis	8270D		1	38717	11/25/12 19:46	KP	TAL NSH
Total/NA	Analysis	Moisture		1	38035	11/21/12 11:06	DF	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Job ID: 490-12211-1 SDG: 1063

Lab Sample ID: 490-12211-5

Matrix: Solid

Matrix: Solid

Percent Solids: 85.0

Percent Solids: 79.9

Lab Sample ID: 490-12211-6

Lab Sample ID: 490-12211-7 Matrix: Solid

Percent Solids: 92.9

Method Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

1

P

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Nashville

Certification Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

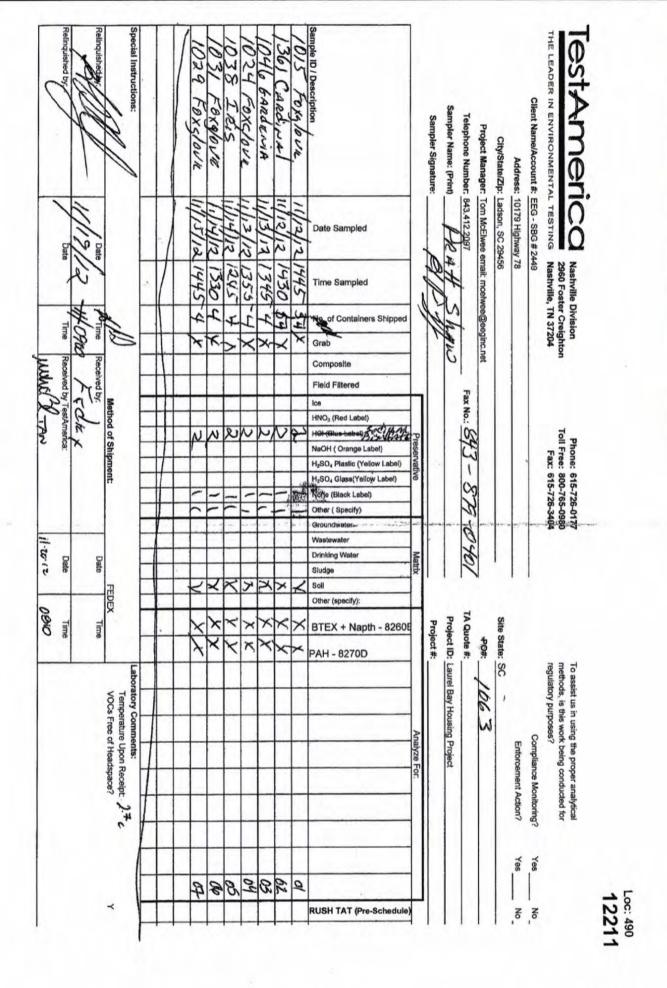
TestAmerica Job ID: 490-12211-1 SDG: 1063

1

Ļ

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.


Authority	Program	EPA Region	Certification ID	Expiration Date
	ACIL		393	10-30-13
A2LA	ISO/IEC 17025		0453.07	12-31-13
Alabama	State Program	4	41150	05-31-13
Alaska (UST)	State Program	10	UST-087	07-24-13
Arizona	State Program	9	AZ0473	05-05-13
Arkansas DEQ	State Program	6	88-0737	04-25-13
California	NELAC	9	1168CA	10-31-13
Canadian Assoc Lab Accred (CALA)	Canada		3744	03-08-14
Colorado	State Program	8	N/A	02-28-13
Connecticut	State Program	1	PH-0220	12-31-13
Florida	NELAC	4	E87358	06-30-13
Illinois	NELAC	5	200010	12-09-12
Iowa	State Program	7	131	05-01-14
Kansas	NELAC	7	E-10229	10-31-13
Kentucky	State Program	4	90038	12-31-12
Kentucky (UST)	State Program	4	19	09-15-13
Louisiana	NELAC	6	LA120025	12-31-12
Louisiana	NELAC	6	30613	06-30-13
Maryland	State Program	3	316	03-31-13
Massachusetts	State Program	1	M-TN032	06-30-13
Minnesota	NELAC	5	047-999-345	12-31-12
Mississippi	State Program	4	N/A	06-30-13
Montana (UST)	State Program	8	NA	01-01-15
Nevada	State Program	9	TN00032	07-31-13
New Hampshire	NELAC	1	2963	10-09-13
New Jersey	NELAC	2	TN965	06-30-13
New York	NELAC	2	11342	04-01-13
North Carolina DENR	State Program	4	387	12-31-12
North Dakota	State Program	8	R-146	06-30-13
Ohio VAP	State Program	5	CL0033	01-19-14
Oklahoma	State Program	6	9412	08-31-13
Oregon	NELAC	10	TN200001	04-30-13
Pennsylvania	NELAC	3	68-00585	06-30-13
Rhode Island	State Program	1	LAO00268	12-30-12
South Carolina	State Program	4	84009 (001)	02-28-13
South Carolina	State Program	4	84009 (002)	02-23-14
Tennessee	State Program	4	2008	02-23-14
Texas	NELAC	6	T104704077-09-TX	08-31-13
USDA	Federal		S-48469	11-02-13
Utah	NELAC	8	TAN	06-30-13
Virginia	NELAC	3	460152	06-14-13
Washington	State Program	10	C789	07-19-13
West Virginia DEP	State Program	3	219	02-28-13
Wisconsin	State Program	5	998020430	08-31-13
Wyoming (UST)	A2LA	8	453.07	12-31-13

TestAmerica	Charl
THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN COOLER RECEIPT FORM	
Cooler Received/Opened On 11/20/2012 @ 0810	490-12211 Chain
1. Tracking # (023) (last 4 digits, FedEx)	
Courier: FedEx IR Gun ID 14740456	
2. Temperature of rep. sample or temp blank when opened: 27 Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank froze	n? YES NO NA
4. Were custody seals on outside of cooler? 2 Front/Bdck	YES.NONA
If yes, how many and where:	6
5. Were the seals intact, signed, and dated correctly?	YES.NONA
6. Were custody papers inside cooler?	YESNONA
certify that I opened the cooler and answered questions 1-6 (intial)	4
7. Were custody seals on containers: YES NO and Intact	YESNO.
Were these signed and dated correctly?	YESNO.
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pa	per Other None
9. Cooling process:	ice Other None
10. Did all containers arrive in good condition (unbroken)?	ESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YES NO NA
12. Did all container labels and tags agree with custody papers?	ES.NONA
13a. Were VOA vials received?	ESNONA
b. Was there any observable headspace present in any VOA vial?	YES NO NA
14. Was there a Trip Blank in this cooler? YES (10)NA If multiple coolers, sequ	ence #
certify that I unloaded the cooler and answered questions 7-14 (intial)	(w)
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH leve	I? YES.NO NA
b. Did the bottle labels indicate that the correct preservatives were used	ESNONA
16. Was residual chlorine present?	YESNO
certify that I checked for chlorine and pH as per SOP and answered guestions 15-16 (intia	0
17. Were custody papers properly filled out (ink, signed, etc)?	ESNONA
18. Did you sign the custody papers in the appropriate place?	ES.NONA
19. Were correct containers used for the analysis requested?	TES NO NA
20. Was sufficient amount of sample sent in each container?	ESNONA
	PED. IIO. INA
	6
certify that I entered this project into LIMS and answered questions 17-20 (intial) certify that I attached a label with the unique LIMS number to each container (intial)	 @

I

1

Ē

1

Login Sample Receipt Checklist

Client: Environmental Enterprise Group

Login Number: 12211 List Number: 1

Creator: McBride, Mike

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-12211-1 SDG Number: 1063

-

1

List Source: TestAmerica Nashville

ATTACHMENT A

1	. Generator's US EP/		Manifest Doc		2. Page 1			-	
NON-HAZARDOUS MANIFEST		1			-				
3. Generator's Mailing Address:	Gen	erator's Site Add	ress (If different than m	ailing):	A. Manife	st Number			
MCAS, BEAUFORT					w	MNA	00310	6842	
LAUREL BAY HOUSING						B. State	Generator's	s ID	
BEAUFORT, SC 29907	CAC2								
4. Generator's Phone 843-228- 5. Transporter 1 Company Name	-6461	6. US	EPA ID Number		-	-	-		
					C. State Tr	ansporter's	D		
EEG, INC.					D. Transpo	orter's Phone	843-	879-041	.1
7. Transporter 2 Company Name		8. US	5 EPA ID Number						
						ansporter's l			_
9. Designated Facility Name and Site Ad	dross	10. L	S EPA ID Number		F. Transpo	orter's Phone	-		
HICKORY HILL LANDFILL		10.	S LFA ID Number		G. State Fa	acility ID			
2621 LOW COUNTRY ROAD					G. State Facility ID H. State Facility Phone 843-987-4643				3
RIDGELAND, SC 29936		1000							1
		1.	1						
11. Description of Waste Materials			12. Co No.	Type	13. Total Quantity	14. Unit Wt./Vol.	L. N	Aisc. Comme	nts
a. HEATING OIL TANKS FILLED WITH SAND									
			-				-		
WM Profile # 102655SC			1-				-		
b.									
WAR Destile #								_	
C. WM Profile #									
WM Profile #									
d.									
WM Profile #	1.13 F		1000			Same S			
J. Additional Descriptions for Materials	Listed Above		K. Dispos	al Location	n				
			Cell				Level	1	
			Grid						
15. Special Handling Instructions and Add	ditional Information	111 1	1	4)	038I	Ris	6)10	29Fo	oxylow
	UST'S FROM: 2) 1046 GARDENIA & 1030 IRIS GIUNTINA								
1) 1361 CARdin	04 3)1		Xglour		0211	oxgioi	ne -		
Purchase Order #		EMERGEN	NCY CONTACT / PHO	JNE NO.:					
16. GENERATOR'S CERTIFICATE: I hereby certify that the above-described	materials are not ha	azardous wastes a	as defined by CER P	art 261 or	any applicable	state law h	ave heen fu	illy and	
accurately described, classified and packa								iny and	
Printed Name	5	Signature "O	n behalf of"	1			Month	Day	Year
17. Transporter 1 Acknowledgement of F	Pacoint of Matorials			NC			15	U	112
Printed Name	incompt of materials	Signature		۸.			Month	Day	Year
JAMES BALOW, N Jenny Bal			us Bale	Suc	-		12	10	10
18. Transporter 2 Acknowledgement of Receipt of Materials							1.5		1.60
		Signature					Month	Day	Year
18. Transporter 2 Acknowledgement of F									
18. Transporter 2 Acknowledgement of F	al								
 Transporter 2 Acknowledgement of F Printed Name Certificate of Final Treatment/Dispos I certify, on behalf of the above listed treatment 	atment facility, that		knowledge, the ab	ove-descri	ibed waste wa	as managed i	n complian	ce with all	
 Transporter 2 Acknowledgement of F Printed Name Certificate of Final Treatment/Dispos I certify, on behalf of the above listed trea applicable laws, regulations, permits and 	atment facility, that licenses on the date	es listed above.				as managed i	n complian	ce with all	
 Transporter 2 Acknowledgement of F Printed Name Certificate of Final Treatment/Dispos I certify, on behalf of the above listed trea applicable laws, regulations, permits and Facility Owner or Operator: Certifica 	atment facility, that licenses on the date	es listed above. n-hazardous mate				as managed i			1
 Transporter 2 Acknowledgement of F Printed Name Certificate of Final Treatment/Dispos I certify, on behalf of the above listed trea applicable laws, regulations, permits and 	atment facility, that licenses on the date	es listed above.				as managed i	Month	Day	Year

Appendix C Laboratory Analytical Report - Groundwater

Volatile Organic Compounds by GC/MS

Client: AECOM - Resolution Consultants	
--	--

Description: BEALB1361TW01WG20150624

Laboratory ID: QF24009-022 Matrix: Aqueous

Date Sampled:06/24/2015 1100

Date Received: 06/25/2015 Analytical Method Dilution Analysis Date Analyst Prep Date Batch **Run Prep Method** 5030B 8260B 07/06/2015 1648 EH1 78858 1 1 CAS Analytical Parameter Result Q LOQ LOD **DL Units Run** Number Method Benzene 71-43-2 8260B 0.45 U 5.0 0.45 0.21 ug/L 1 5.0 Ethylbenzene 100-41-4 8260B 0.51 U 0.51 0.21 ug/L 1 Naphthalene 91-20-3 8260B 0.98 J 5.0 0.96 0.14 ug/L 1 8260B 0.48 U Toluene 108-88-3 5.0 0.48 0.24 ug/L 1 Xylenes (total) 1330-20-7 8260B 0.57 U 5.0 0.57 0.19 ug/L 1 Run 1 Acceptance Surrogate Q % Recovery Limits Bromofluorobenzene 100 75-120 1.2-Dichloroethane-d4 92 70-120 Toluene-d8 106 85-120 Dibromofluoromethane 94 85-115

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failureS = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Semivolatile	Organic	Compounds by	y GC/MS (SIM)
--------------	---------	--------------	-----------	------

Client: AECOM - Resolution Consultants

Description: BEALB1361TW01WG20150624

Laboratory ID: QF24009-022

Date Sampled:06/24/2015 1100

Matrix: Aqueous

Date Received: 06/25/2015

RunPrep Method13520C	Analytical Method Di 8270D (SIM)		ysis Date Analyst /2015 1105 DRB1	•	te Batch 5 1632 78383			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	LOD	DL	Units Run
Benzo(a)anthracene		56-55-3	8270D (SIM)	0.040 U	0.20	0.040	0.019	ug/L 1
Benzo(b)fluoranthene		205-99-2	8270D (SIM)	0.040 U	0.20	0.040	0.019	ug/L 1
Benzo(k)fluoranthene		207-08-9	8270D (SIM)	0.040 U	0.20	0.040	0.024	ug/L 1
Chrysene		218-01-9	8270D (SIM)	0.040 U	0.20	0.040	0.021	ug/L 1
Dibenzo(a,h)anthracene		53-70-3	8270D (SIM)	0.080 U	0.20	0.080	0.040	ug/L 1
Run 1 Acceptance Surrogate Q % Recovery								
2-Methylnaphthalene-d10	(91 15-	139					
Fluoranthene-d10	Ş	95 23-	154					

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time Q = Surrogate failure $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL $J = Estimated result < PQL and <math>\ge MDL$ $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% N = Recovery is out of criteria L = LCS/LCSD failure S = MS/MSD failure Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Appendix D Laboratory Analytical Report - Vapor

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Page 1 of 1

Client:	AECOM	ALS Project ID: P1503199
Client Sample ID:	BEALB 1361 SG01 GS20150730	ALS Sample ID: P1503199-021
Client Project ID:	WE56-Laurel Bay Military Housing Area, MCAS Beaufort / 603	42031.FI.WI
Test Code:	EPA TO-15	Date Collected: 7/30/15

rest coue.		Dute Concetted. 77	50/15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 8/	5/15
Analyst:	Simon Cao	Date Analyzed: 8/	12/15
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	0.20 Liter(s)
Test Notes:			
Container ID:	SC00265		

Initial Pressure (psig): -1.65 Final Pressure (psig): 3.79

Canister Dilution Factor: 1.42

CAS #	Compound	Result μg/m³	LOQ µg/m³	LOD µg/m³	MDL µg/m³	Data Qualifier
71-43-2	Benzene	3.2	3.6	3.2	1.1	U
108-88-3	Toluene	3.4	3.6	3.1	1.2	J
100-41-4	Ethylbenzene	3.1	3.6	3.1	1.1	U
179601-23-1	m,p-Xylenes	6.1	7.1	6.1	2.1	U
95-47-6	o-Xylene	3.0	3.6	3.0	1.1	U
91-20-3	Naphthalene	3.1	3.6	3.1	1.3	U

U = Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis. LOQ = Limit of Quantitation - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the LOQ but greater than or equal to the MDL. Appendix E Regulatory Correspondence

DHEC

PROMOTE PROTECT PROSPER Catherine B. Templeton, Director

May 15, 2014

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA

Laurel Bay Underground Storage Tank Assessment Reports for: *See attached sheet*

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tank Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at this site.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email)

DHEC

PROMOLE PROTECT PROSPER

Catherine B. Templeton, Director

Attachment to: Krieg to Drawdy Subject: IGWA Dated 5/15/2014

Laurel Bay Underground Storage Tank Assessment Reports for: (121 addresses/139 tanks)

137 Laurel Bay Tank 2	387 Acorn
139 Laurel Bay	392 Acorn Tank 2
229 Cypress Tank 2 *	396 Acorn Tank 1
261 Beech Tank 1 •	396 Acorn Tank 2
261 Beech Tank 3	430 Elderberry
273 Birch Tank 1 🔹	433 Elderberry
273 Birch Tank 2	439 Elderberry
273 Birch Tank 3	440 Elderberry
276 Birch Tank 2 ·	442 Elderberry
278 Birch Tank 2	443 Elderberry
291 Birch Tank 2	444 Elderberry Tank 1
300 Ash -	445 Elderberry
304 Ash *	446 Elderberry
314 Ash Tank 1	448 Elderberry
314 Ash Tank 2	449 Elderberry
322 Ash Tank 2 *	451 Elderberry
323 Ash *	453 Elderberry
324 Ash *	456 Elderberry Tank 1
325 Ash Tank 1 •	456 Elderberry Tank 2
325 Ash Tank 2	458 Elderberry Tank 1
326 Ash -	458 Elderberry Tank 3
336 Ash •	464 Dogwood
339 Ash •	466 Dogwood
343 Ash Tank 1 *	467 Dogwood
344 Ash Tank 1	468 Dogwood
348 Ash *	469 Dogwood
349 Ash Tank 1	471 Dogwood Tank 2
353 Ash Tank 1	471 Dogwood Tank 3
362 Aspen	475 Dogwood Tank 1
376 Aspen *	475 Dogwood Tank 2
380 Aspen	516 Laurel Bay Tank 1 (UST#03747)
383 Aspen Tank 2 *	518 Laurel Bay

2600 Bull Street * Columbia, SC23201 * Phone; (803) SDS 34.52 * www.sedhee.gow

Laurel Bay Underground Storage Tank Assessment Reports for: (121 addresses/139 tanks) cont.

531 Laurel Bay	1219 Cardinal	
532 Laurel Bay	1272 Albatross	
635 Dahlia Tank 2	1305 Eagle	
638 Dahlia	1353 Cardinal	
640 Dahlia Tank 1	1356 Cardinal	
640 Dahlia Tank 2	1357 Cardinal	
645 Dahlia	1359 Cardinal	
647 Dahlia	1360 Cardinal	
648 Dahlia Tank 2	1361 Cardinal	
650 Dahlia Tank 1	1368 Cardinal	
650 Dahlia Tank 2	1370 Cardinal Tank 1	
652 Dahlia Tank 1	1377 Dove	
652 Dahlia Tank 2	1381 Dove	
760 Althea	1382 Dove	
763 Althea	1384 Dove	
771 Althea	1385 Dove	
927 Albacore	1389 Dove	
1015 Foxglove	1391 Dove	
1046 Gardenia	1392 Dove	
1062 Gardenia Tank 2	1393 Dove Tank 1	
1070 Heather	1393 Dove Tank 2	
1072 Heather	1406 Eagle	
1102 Iris Tank 1	1407 Eagle Tank 1	
1107 Iris	1411 Eagle Tank 1	
1126 Iris	1411 Eagle Tank 2	
1129 Iris	1412 Eagle	
1132 Iris	1413 Albatross	
1133 Iris Tank 1	1414 Albatross	
1138 Iris	1422 Albatross	
1144 Iris Tank 1	1425 Albatross	
1144 Iris Tank 2	1426 Albatross	
1148 Iris Tank 1	1432 Dove	
1148 Iris Tank 2	1434 Dove	
1161 Jasmine	1436 Dove	
1167 Jasmine	1438 Dove Tank 1	
1170 Jasmine	1440 Dove	
1190 Bobwhite	1442 Dove Tank 1	
1192 Bobwhite		

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

> Division of Waste Management Bureau of Land and Waste Management

February 22, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval and Concurrence with Draft Final Initial Groundwater Investigation Report-May and June 2015 Laurel Bay Military Housing Area Multiple Properties Dated October 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Investigation Report for the addresses attached. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent wells should be installed at the 52 stated addresses. For the remaining 91 addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

LINT

Laurel Petrus RCRA Federal Facilities Section

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email)

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-May and June 2015 Specific Property Recommendations Dated February 22, 2016

Draft Final Initial Groundwater Investigation Report for (143 addresses)

273 Birch Drive	1192 Bobwhite Drive
325 Ash Street	1194 Bobwhite Drive
326 Ash Street	1272 Albatross Drive
336 Ash Street	1352 Cardinal Lane
343 Ash Street	1356 Cardinal Lane
353 Ash Street	1359 Cardinal Lane
430 Elderberry Drive	1360 Cardinal Lane
440 Elderberry Drive	1362 Cardinal Lane
456 Elderberry Drive	1370 Cardinal Lane
458 Elderberry Drive	1382 Dove Lane
468 Dogwood Drive	1384 Dove lane
518 Laurel Bay Blvd	1385 Dove Lane
635 Dahlia Drive	1389 Dove Lane
638 Dahlia Drive	1392 Dove Lane
640 Dahlia Drive	1393 Dove Lane
647 Dahlia Drive	1407 Eagle Lane
648 Dahlia Drive	1411 Eagle Lane
650 Dahlia Drive	1418 Albatross Drive
652 Dahlia Drive	1420 Albatross Drive
760 Althea Street	1426 Albatross Drive
1102 Iris Lane	1429 Albatross Drive
1132 Iris Lane	1434 Dove Lane
1133 Iris Lane	1436 Dove Lane
1144 Iris Lane	1440 Dove Lane
1148 Iris Lane	1442 Dove Lane
1186 Bobwhite Drive	1444 Dove Lane
No Fur	ther Action recommendation (91 addresses):
137 Laurel Bay Blvd	771 Althea Street
139 Laurel Bay Blvd	927 Albacore Street
229 Cypress Street	1015 Foxglove Street
261 Beech Street	1046 Gardenia Drive
276 Birch Drive	1062 Gardenia Drive
278 Birch Drive	1070 Heather Street
291 Birch Drive	1072 Heather Street

300 Ash Street	1107 Iris Lane	~
304 Ash Street	1126 Iris Lane	
314 Ash Street	1129 Iris Lane	
322 Ash Street	1138 Iris Lane	
323 Ash Street	1161 Jasmine Street	
324 Ash Street	1167 Jasmine Street	
339 Ash Street	1170 Jasmine Street	
344 Ash Street	1190 Bobwhite Drive	
348 Ash Street	1219 Cardinal Lane	
349 Ash Street	1305 Eagle Lane	
362 Aspen Street	1353 Cardinal Lane	
376 Aspen Street	1354 Cardinal Lane	
380 Aspen Street	1357 Cardinal Lane	24-te
383 Aspen Street	1361 Cardinal Lane	
387 Acorn Drive	1364 Cardinal Lane	
392 Acorn Drive	1368 Cardinal Lane	
396 Acorn Drive	1377 Dove Lane	
433 Elderberry Drive	1381 Dove Lane	
439 Elderberry Drive	1391 Dove Lane	
442 Elderberry Drive	1403 Eagle Lane	
443 Elderberry Drive	1404 Eagle Lane	
444 Elderberry Drive	1405 Eagle Lane	
445 Elderberry Drive	1406 Eagle Lane	
446 Elderberry Drive	1408 Eagle Lane	
448 Elderberry Drive	1410 Eagle Lane	
449 Elderberry Drive	1412 Eagle Lane	
451 Elderberry Drive	1413 Albatross Drive	
453 Elderberry Drive	1414 Albatross Drive	
464 Dogwood Drive	1417 Albatross Drive	
466 Dogwood Drive	1421 Albatross Drive	
467 Dogwood Drive	1422 Albatross Drive	100
469 Dogwood Drive	1425 Albatross Drive	
471 Dogwood Drive	1427 Albatross Drive	
475 Dogwood Drive	1430 Dove Lane	
516 Laurel Bay Blvd	1432 Dove Lane	
531 Laurel Bay Blvd	1438 Dove Lane	
532 Laurel Bay Blvd	1453 Cardinal Lane	
645 Dahlia Drive	1455 Cardinal Lane	
763 Althea Street		

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-May and June 2015 Specific Property Recommendations Dated February 22, 2016, Page 2

June 20, 2017

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval Response to Comments and Draft Final Revision 1 Vapor Intrusion Report July 2015, January 2016 and May 2016, Laurel Bay Military Housing Area, Multiple Properties

RE: Approval Response to Comments and Draft Final Revision 1 Letter Report - Petroleum Vapor Intrusion Investigations - June 2016 and January 2017, Multiple Properties, Laurel Bay Military Housing Area

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (DHEC) received the above referenced response to comments and errata pages on May 24 and June 7, 2017. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

DHEC has reviewed the response to comments and errata pages. Based on this review, DHEC did not generate any additional comments. Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary. If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

XIRto

Laurel Petrus Department of Defense Corrective Action Section

Cc: Russell Berry, EQC Region 8 Shawn Dolan, Resolution Consultants Bryan Beck, NAVFAC MIDLANT